Observer-based sliding mode control for piezoelectric wing bending-torsion coupling flutter involving delayed output

Author:

Li Da1ORCID,Yang Hui1ORCID,Qi Na2ORCID,Yuan Jiaxin1ORCID

Affiliation:

1. Shanghai University of Engineering Science, School of Air Transport, China

2. KEIHIN Electronic Device Research and Development (Shanghai) Company, China

Abstract

An observer-based sliding mode control scheme is proposed for suppressing bending-torsion coupling flutter motions of a wing aeroelastic system with delayed output by using the piezoelectric patch actuators. The wing structure is modeled as a thin-walled beam, and the aerodynamics on the wing are computed by the strip theory. For the implementation of the control algorithm, the piezoelectric patch is bonded on the top surface of the beam to act as the actuator. Ignoring the effect of piezoelectric actuators on structural dynamics, only considering the bending moments induced by piezoelectric effects, the corresponding dynamic motion equation is established by using the Lagrange method with the assumed mode method. The flutter speed and frequency of the closed-loop system with time delay are obtained by solving a polynomial eigenvalue problem. An observer-based controller that does not dependent on time delay is developed for suppressing the flutter, and the corresponding gain matrices are obtained by solving linear matrix inequalities. The sufficient condition for the asymptotic stability of the closed-loop system is derived in terms of linear matrix inequalities. The simulation results demonstrate that the proposed control strategy based on the piezoelectric actuator is effective in wing bending-torsion coupling flutter system with a delayed output.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3