Super-twisting disturbance observer-based finite- time attitude stabilization of flexible spacecraft subject to complex disturbances

Author:

Yan Ruidong12,Wu Zhong1ORCID

Affiliation:

1. School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing, 100191, People's Republic of China

2. School of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China

Abstract

There exist complex disturbances in the attitude control system of flexible spacecrafts, such as space environmental disturbances, flexible vibrations, inertia uncertainties, payload motions, etc. To suppress the effects of these disturbances on the performance of attitude stabilization, a super-twisting disturbance observer (STDO)-based nonsingular terminal sliding mode controller (NTSMC) is proposed in this paper. First, STDO is designed for a second-order dynamical system constructed by applying the lumped disturbance and its integral as state variables, and applying the integral as virtual measurement. Since the virtual measurement is obtained by integrating the inverse attitude dynamics, STDO not only avoids the differential operation of angular velocity, but also fully utilizes the information of a nonlinear model. By combining STDO with NTSMC, a composite controller is designed to achieve high-accuracy spacecraft attitude stabilization. Since most of the disturbances are compensated for by a STDO-based feedforward compensator, only a small switching gain is required to deal with the residual disturbances and uncertainties. Thus, the chattering phenomenon of the controller can be alleviated to a great extent. Finally, numerical simulations for the comparison between STDO-based NTSMC and nonlinear disturbance observer-based NTSMC are carried out in the presence of complex disturbances to verify the effectiveness of the proposed approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural network-based control for the on-orbit assembly of heterogeneous spacecraft cluster based on Vicsek fractal;Aerospace Science and Technology;2024-10

2. Adaptive super-twisting sliding mode control with neural network for electromechanical actuators based on friction compensation;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-08-17

3. Designing a fixed-time observer-based adaptive non-singular sliding mode controller for flexible spacecraft;ISA Transactions;2024-05

4. Trajectory Tracking Control for Intelligent Wheelchairs Based on Super-Twisting Sliding Mode Observer;2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2024-03-29

5. Robust Stabilization of Nonlinear Delay System with Unknown Disturbance via Hamiltonian Method;2023 China Automation Congress (CAC);2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3