Mitigation of Pedestrian-induced Vibrations in Suspension Footbridges via Multiple Tuned Mass Dampers

Author:

Carpineto Nicola1,Lacarbonara Walter2,Vestroni Fabrizio1

Affiliation:

1. Dipartimento di Ingegneria Strutturale e Geotecnica, University of Rome La Sapienza, via Eudossiana, 18, Rome 00184, Italy

2. Dipartimento di Ingegneria Strutturale e Geotecnica, University of Rome La Sapienza, via Eudossiana, 18, Rome 00184, Italy,

Abstract

The dynamic response of suspension footbridges to pedestrian-induced excitations and its passive mitigation, via multiple tuned mass dampers (TMDs), are investigated. First, the nonlinear equations of motion are obtained assuming finite planar motions of the suspension bridge. A suitable approximate version of the equations of motion is shown to be in agreement with existing theories and its linearization is then employed in the structural dynamics analyses. A Galerkin discretization is exploited to calculate both the free and forced dynamic response towards the design of the vibration control system. First, the leading characteristics of the bridge dynamic response are outlined. Resonant vibrations induced by the passage of pedestrians are shown to be effectively reduced using viscoelastic TMDs. As the frequencies of the lowest two modes in suspension footbridges can be very close in the proximity of the crossover phenomenon, three different design scenarios are considered: below, near and above the crossover. In particular, the influence of these scenarios on the passive control architecture is investigated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3