Vibration reduction of footbridges subjected to walking, running, and jumping pedestrian

Author:

Saber Hamed1ORCID,Samani Farhad S2ORCID,Pellicano Francesco3

Affiliation:

1. Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

2. Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy

3. Centre Inter Mech Mo.Re, University of Modena and Reggio Emilia, Modena, Italy

Abstract

In this paper, the performance of vibration absorbers in reducing the vertical deflections of the footbridges subjected to human activities is studied. The vertical component of the pedestrian force during walking, running, and jumping is simulated as a moving time-dependent force model. The optimal parameters for the attached vibration absorbers are defined to minimize the deflection of the footbridge. The effectiveness of each vibration absorber is reviewed for different types of excitations. Results show reductions of 91%, 95%, and 96% in terms of the amplitude of vibration for the footbridge with the optimized tuned mass damper subjected to walking, running, and jumping, respectively, in comparison with a bare footbridge. The performance of the tuned mass dampers optimized numerically in the present study is compared with the tuned mass dampers possessing parameters achieved analytically. The damped footbridge with the numerically optimized tuned mass damper under walking, running, and jumping pedestrian experienced a deflection reduction of 9%, 34%, and 37%, respectively, concerning the tuned mass damperwith analytical parameters.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3