Nonlinear dynamic properties of disk-bolt rotor with interfacial cutting faults on assembly surfaces

Author:

Liu Yi12ORCID,Liu Heng12ORCID,Fan BoWen12ORCID

Affiliation:

1. Key Laboratory of Education, Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, People’s Republic of China

2. State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, People's Republic of China

Abstract

Interfacial cutting faults on assembly surfaces are considered in a three-dimensional (3D) disk-bolt rotor system. The traditional finite element method is used to establish the 3D model of faulted disk-bolt rotor. A contact algorithm is applied to calculate the static features of this combined rotor. It is revealed that interfacial cutting faults produce rotor bending which is gradually strengthened as rotational speed increases besides disk’s mass eccentricity. The 3D dynamic equations of a faulted disk-bolt rotor system include these cutting faults’ static influences. The nonlinear dynamic properties are investigated by Poincaré mapping, Newton iteration and a prediction-correction algorithm. As a result, the rotor bending due to cutting faults reduces the global stability of the complicated rotor and enlarges the vibration amplitude obviously. This speed-variant bending also decides the feature that rotor vibration increases again after critical speed no matter whether dynamic balance is carried out. The maximum allowable fault depth is obtained and it gives an explanation as to why the machining precision of assembly surfaces should be strictly controlled in the disk-bolt rotor. Generally, this paper originally tries to provide a feasible approach to consider a 3D interfacial cutting fault with specific shape and to analyze the static–dynamic coupling characteristics for a disk-bolt rotor.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3