Dynamics of a Rigid Rotor Linear/Nonlinear Bearings System Subject to Rotating Unbalance and Base Excitations

Author:

El-Saeidy Fawzi M.A.1,Sticher Fred2

Affiliation:

1. Faculty of Engineering, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia,

2. Faculty of Engineering, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia

Abstract

Rotating machinery support excitations can occur if a machine is installed on a base prone to ground motions or on-board moving systems such as ships and aircraft. This paper presents a formulation for the dynamic analysis of rigid rotors subject to base excitations plus mass imbalance. The formulation allows for six motions at the machine base and takes into account the linear/nonlinear spring characteristics of the supporting bearings. Equations of motion are derived using Lagrange’s equations. For rotor—linear bearing systems subject to mass imbalance plus harmonic excitations along or around lateral directions, analytical solutions for equations of motion are derived and analytical results in the time domain are compared with their counterparts obtained by numerical integration using the Runge—Kutta method and typical agreement is obtained. The system natural frequencies as affected by rotor speed are obtained using the QR algorithm using the DAMRO-1 program and compared with those obtained by MATLAB and excellent agreement is obtained. The frequency response (maximum amplitude of vibrations against the base excitation frequency) is characterized by peaks at natural frequencies of the rotating gyroscopic system. This necessitates extreme precaution when we design such rotating systems that are prone to base motions and mass imbalance. For systems with bearing cubic nonlinearity, results are obtained by numerical integration and discussed with regards to the time domain, fast Fourier transform (FFT) and Poincaré map. Periodic and quasi-periodic disk/bearings motions are observed. For systems with support cubic nonlinearity and subject to mass imbalance and base excitation, the FFT of disk horizontal and vertical vibrations is marked with sum and difference tones, ± nfb± fs( n + m is always odd) where fs is the rotating unbalance frequency and fb is base excitation frequency.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3