Reciprocating compressor fault diagnosis using an optimized convolutional deep belief network
Author:
Affiliation:
1. School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Australia
2. Key Laboratory of Engine Health Monitoring-Control and Networking Ministry of Education, Beijing University of Chemical Technology, China
Abstract
Funder
China Scholarship Council
Ministry of Science and Technology of the People's Republic of China
Publisher
SAGE Publications
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Link
http://journals.sagepub.com/doi/pdf/10.1177/1077546319900115
Reference35 articles.
1. Fault diagnosis of reciprocating compressors using revelance vector machines with a genetic algorithm based on vibration data
2. An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks
3. BIGOWL: Knowledge centered Big Data analytics
4. Introduction to Compressed Sensing and Sparse Filtering
5. A semi-supervised auto-encoder using label and sparse regularizations for classification
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Wind turbines fault diagnosis method under variable working conditions based on AMVMD and deep discrimination transfer learning network;Measurement Science and Technology;2024-01-24
2. Fault diagnosis method of multi-rotor UAV based on one-dimensional convolutional neural network with adaptive batch normalization algorithm;Measurement Science and Technology;2023-11-01
3. Deep Learning Techniques in Intelligent Fault Diagnosis and Prognosis for Industrial Systems: A Review;Sensors;2023-01-23
4. Application of state parameter learning for fault diagnosis on the large reciprocating compressor;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-01-09
5. Multisensor information fusion method for intelligent fault diagnosis of reciprocating compressor in shale gas development;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2022-11-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3