Deep Learning Techniques in Intelligent Fault Diagnosis and Prognosis for Industrial Systems: A Review

Author:

Qiu Shaohua1ORCID,Cui Xiaopeng1,Ping Zuowei1,Shan Nanliang1,Li Zhong1,Bao Xianqiang1,Xu Xinghua1

Affiliation:

1. National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering, Wuhan 430033, China

Abstract

Fault diagnosis and prognosis (FDP) tries to recognize and locate the faults from the captured sensory data, and also predict their failures in advance, which can greatly help to take appropriate actions for maintenance and avoid serious consequences in industrial systems. In recent years, deep learning methods are being widely introduced into FDP due to the powerful feature representation ability, and its rapid development is bringing new opportunities to the promotion of FDP. In order to facilitate the related research, we give a summary of recent advances in deep learning techniques for industrial FDP in this paper. Related concepts and formulations of FDP are firstly given. Seven commonly used deep learning architectures, especially the emerging generative adversarial network, transformer, and graph neural network, are reviewed. Finally, we give insights into the challenges in current applications of deep learning-based methods from four different aspects of imbalanced data, compound fault types, multimodal data fusion, and edge device implementation, and provide possible solutions, respectively. This paper tries to give a comprehensive guideline for further research into the problem of intelligent industrial FDP for the community.

Funder

National Natural Science Foundation of China

Hubei Provincial Natural Science Foundation of China

Foundation for the National Key Laboratory of Science and Technology

Project Foundation of University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3