Affiliation:
1. Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
2. Institute of Railway Research, University of Huddersfield, Huddersfield HD1 3DH, UK
Abstract
The increasing use of collaborative robots in smart manufacturing, owing to their flexibility and safety benefits, underscores a critical need for robust predictive maintenance strategies to prevent unexpected faults/failures of the machine. This paper focuses on fault detection and employs multivariate operational data from a universal robot to detect anomalies or early-stage faults using test data from designed anomalous conditions and artificial-intelligence-based anomaly detection techniques called autoencoders. The performance of three autoencoders, namely, a multi-layer-perceptron-based autoencoder, convolutional-neural-network-based autoencoder, and sparse autoencoder, was compared in detecting anomalies. The results indicate that the autoencoders effectively detected anomalies in the examined complex and noisy datasets with more than 93% overall accuracy and an F1 score exceeding 96% for the considered anomalous cases. Moreover, the integration of trajectory change detection and anomaly detection algorithms (i.e., the dynamic time warping algorithm and sparse autoencoder, respectively) was proposed for the local implementation of online condition monitoring. This integrated approach to anomaly detection and trajectory change provides a practical, adaptive, and economical solution for enhancing the reliability and safety of collaborative robots in smart manufacturing environments.
Reference40 articles.
1. Aliev, K., and Antonelli, D. (2021). Proposal of a Monitoring System for Collaborative Robots to Predict Outages and to Assess Reliability Factors Exploiting Machine Learning. Appl. Sci., 11.
2. Collaborative Robots: Frontiers of Current Literature;Knudsen;J. Intell. Syst. Theory Appl.,2020
3. Intelligent Maintenance Systems and Predictive Manufacturing;Lee;J. Manuf. Sci. Eng.,2020
4. Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., and Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Appl. Sci., 12.
5. An ontology model for maintenance strategy selection and assessment;Vingerhoeds;J. Intell. Manuf.,2023