Affiliation:
1. Department of Mechanical Engineering, Saitama University, Sakura-Ku, Saitama, Japan
Abstract
In this paper we present an improved zero-power controlled magnetic suspension system that has the capability to adjust stiffness. The conventional zero-power control system produces constant negative stiffness, and the stiffness solely depends on the capacity of the permanent magnets or the gap–force coefficient of the magnets. This becomes an obstacle to the fields of application of zero-power control where the adjustment of stiffness is necessary, such as developing a vibration isolation system. In this research, the basic zero-power control system is modified such that it can adjust stiffness by adding a minor proportional feedback of displacement to the zero-power controller. Finally, a vibration isolation system is developed by combining a positive stiffness spring in series with a negative stiffness suspension realized by the modified zero-power controller. The proposed control system and the developed vibration isolation system are investigated both analytically and experimentally.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献