Integration Method for Response History Analysis of Single-Degree-of-Freedom Systems with Negative Stiffness

Author:

Chatzikonstantinou Nikoleta,Makarios Triantafyllos K.ORCID,Athanatopoulou AsiminaORCID

Abstract

The present article deals with the mathematical investigation of a negative-stiffness ideal system that can be used in seismic isolation of civil engineering structures. Negative-stiffness systems can be used in the seismic isolation of structures, because in the case of a strong earthquake, they do not easily allow vibrations to develop. These negative-stiffness systems can be significantly more efficient than the usual seismic isolation systems, as they drastically reduce the vibrational amplitudes of structures, as well as eliminate the inertial seismic structure loadings. The mathematical investigation of a negative-stiffness ideal system provides documented answers about the effect of negative-stiffness systems in the seismic behavior of structures. First, the differential equation of motion of a single-degree-of-freedom oscillator (SDoF) is formulated, without classical damping, but with negative stiffness. Furthermore, the mathematical solution of the equation of motion is given, where it is proven that this solution does not describe a structure vibration. Furthermore, the seismic structure motion follows an exponential increase when the seismic ground excitation is purely sinusoidal. Finally, to calculate the real response of the negative-stiffness system, a suitable modification of the Newmark iterative numerical method is proposed.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3