A novel gearbox fault feature extraction and classification using Hilbert empirical wavelet transform, singular value decomposition, and SOM neural network

Author:

Merainani Boualem12,Rahmoune Chemseddine1,Benazzouz Djamel1,Ould-Bouamama Belkacem2

Affiliation:

1. Solid Mechanics and Systems Laboratory (LMSS), University M’hamed Bougara Boumerdes, Algeria

2. Centre de Recherche en Informatique, Signal et Automatique de Lille (CRISTAL), Polytech Lille, Université de Lille 1, France

Abstract

There are growing demands for condition monitoring and fault diagnosis of rotating machinery to lower unscheduled breakdown. Gearboxes are one of the fundamental components of rotating machinery; their faults identification and classification always draw a lot of attention. However, non-stationary vibration signals and low energy of weak faults makes this task challenging in many cases. Thus, a new fault diagnosis method which combines the Hilbert empirical wavelet transform (HEWT), singular value decomposition (SVD), and self-organizing feature map (SOM) neural network is proposed in this paper. HEWT, a new self-adaptive time-frequency analysis was applied to the vibration signals to obtain the instantaneous amplitude matrices. Then, the singular value vectors, as the fault feature vectors were acquired by applying the SVD. Last, the SOM was used for automatic gearbox fault identification and classification. An electromechanical model comprising an induction motor coupled with a single stage spur gearbox is considered where the vibration signals of four typical operation modes were simulated. The conditions include the healthy gearbox, input shaft slant crack, tooth cracking, and tooth surface pitting. Obtained results show that the proposed method effectively identifies the gearbox faults at an early stage and realizes automatic fault diagnosis. Moreover, performance evaluation and comparison between the proposed HEWT–SVD method and Hilbert–Huang transform (HHT)–SVD approach show that the HEWT–SVD is better for feature extraction.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3