A beam–ring circular truss antenna restrained by means of the negative speed feedback procedure

Author:

EL-Sayed Taha Ashraf T1ORCID,Bauomy Hany S23ORCID

Affiliation:

1. Department of Basic Sciences, Modern Academy for Engineering and Technology, Egypt

2. Department of Mathematics, College of Arts and Science in Wadi Addawasir, Prince Sattam Bin Abdulaziz University, Saudi Arabia

3. Department of Mathematics, Faculty of Science, Zagazig University, Egypt

Abstract

The present article contemplates the nonlinear powerful exhibitions of affecting dynamic vibration controller over a beam–ring structure for demonstrating the circular truss antenna exposed to mixed excitations. The dynamic controller comprises the included negative speed input added to the framework’s idea. By using the statue, Hamilton, the nonlinear fractional differential administering conditions of movement and the limit conditions have inferred for the shaft ring structure. Through Galerkin’s method, the nonlinear partial differential equations referred to overseeing the movement of the shaft ring structure have diminished to a coupled normal differential equations extending the nonlinearities square terms. Multiple time scales have helped in acquiring (getting) the four-dimensional averaged equations for measuring the primary and 1:2 internal resonances. This article’s controlled assessment is useful for controlling the nonlinear vibrations of the considered framework. Likewise, the controller dispenses with the framework’s oscillations in a brief time frame. The demonstrations of the numerous coefficients and the framework directed at the examined resonance case have been determined. Using MATLAB 7.0 programs has aided in completing the simulation results. At last, the numerical outcomes displayed an admirable concurrence with the methodical ones. A comparison with recently available articles has also indicated good results through using the presented controller.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3