A vibration analysis of the permanent magnet synchronous motor under the effect of proportional derivative control

Author:

Bauomy H SORCID,Amer Y A,Elsayed A T,Agwa M M

Abstract

Abstract In industrial environments, excessive vibration can pose a safety risk since it can weaken the structural integrity of PMSMs and adjacent equipment. Vibration levels can be understood and controlled to help assure safe operation and avoid mishaps or equipment breakdowns. Friction and mechanical resistance are examples of vibration-induced losses that can lower PMSMs’ overall efficiency. Through the optimization of motor design and operation, engineers may minimize vibration and increase energy efficiency while lowering operating costs. Since an electric motor’s tendency to overheat after a brief period of use is linked to oscillating vibration, this study employs a proportional derivative control (PD control) to demonstrate the potential effectiveness of a permanent magnet synchronous motor (PMSM). The external force is a component of the non-linear dynamical system. The equation of the (PMSM) system is explained with two-degree-of-freedom (2dof) differential coupled equations, consisting of the major body (motor current) and cutting drive system. The present study uses the approximate method of multiple scales perturbation technique (MSPT) to get an approximate solution, showing the response equation before using (PD) and to achieve the highest effect on the control system so as to ensure the highest efficiency at the lowest possible cost. Different numerical tests have been conducted (NPDCVF, NVC, PPF, PD, delay velocity) and showed that (PD) has the best effect and is able to control the vibrations with more accuracy than others. Then, the vibration value of the system has been studied numerically before and after applying the control method of (MSPT). By combining the analysis of the resonance situation via both the phase plane techniques and the frequency response equation ω 1 ω 2 , ω ω 2 , within the utilization of Runge–Kutta of the fourth-order, the stability of the numerical solution has been investigated. Then, by employing the MATLAB tool, the impact of various parameters on model performance has been examined numerically. Lastly, a comparison is made with earlier research and other techniques used in prior work using other types of control mechanisms for other systems.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3