Airfoil control surface discontinuous nonlinearity experimental assessment and numerical model validation

Author:

Vasconcellos Rui MG1,Abdelkefi Abdessattar2,Hajj Muhammad R2,Almeida Daniel P3,Marques Flávio D3

Affiliation:

1. São Paulo State University - UNESP, São João da Boa Vista, SP, Brazil

2. Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

3. Engineering School of São Carlos, University of São Paulo, São Carlos, SP, Brazil

Abstract

A variety of dynamic behaviors that may be encountered in aeroelastic systems with discontinuous nonlinearities has motivated investigations that may support future applications in flight controls design, flutter prediction, instability characterization and energy harvesting. In this paper, the case of an airfoil with control surface freeplay is assessed experimentally and modeled numerically using an alternative continuous approximation for the discontinuous nonlinearity based on hyperbolic tangent function representation. The unsteady aerodynamic loads are computed using the modified unsteady Theodorsen approximation for arbitrary motions. The validity of the proposed freeplay representation is performed through comparison with experimental data. Adjustments to the pitching restoring moments have been carried out to account for a smooth polynomial concentrated nonlinearity. Data analysis is performed to characterize and investigate the experimental signals. Sub-critical bifurcation behavior is observed from both experimental data and the numerical model prediction. The results confirm the validity of hyperbolic tangent function combinations for freeplay nonlinearity representation for the experimental setup conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3