Affiliation:
1. Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, Brazil
Abstract
Structural nonlinearities are usually present in aeroelastic systems. The analysis of this system commonly comprises a study involving only one type of nonlinearity, influencing a particular motion of the airfoil. However, practical applications of aeroelastic systems can be affected by different types of structural nonlinearities. It becomes essential to study the stability of the aeroelastic system under these conditions to assess more real operational flight procedures. In this context, this article presents an investigation of a typical aeroelastic section response with trailing edge control surface subjected to combinations of concentrated structural nonlinearities. Different nonlinear scenarios involving cubic hardening stiffness in pitching and free play, free play with preload, and slip dry friction in the trailing edge control surface motion are analyzed. The mathematical model is based on linear unsteady aerodynamics coupled to a three-dof typical aeroelastic section. Hopf bifurcations diagrams are obtained from direct time integration of the equation of motion. The post-flutter limit cycle oscillations are investigated, revealing supercritical and subcritical bifurcations. A complete parametric study of the nonlinear parameters is carried out, thereby allowing a sensitivity analysis of each nonlinear scenario. The results show that aeroelastic tailoring considering the mild post-flutter behavior can be achieved through an appropriate choice of combined nonlinear effects. Moreover, combined nonlinearities can mitigate the undesired subcritical aeroelastic responses caused by free play.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献