Experimental study of stability prediction for high-speed robotic milling of aluminum

Author:

Hao Daxian1ORCID,Wang Wei1ORCID,Liu Zhaoheng2ORCID,Yun Chao1

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, China

2. Department of Mechanical Engineering, École de Technologie Supérieure, Canada

Abstract

It has been fully demonstrated that the regenerative chatter theory is applicable for predicting chatter-free milling parameters for computer numerical control machine tools, but researchers are still arguing whether it is effective for robotic milling processes. The main reason is that the robot’s modes greatly shift, depending on its varying dynamic parameters and joint configurations. More experimental investigations are required to study and better understand the mechanism of vibration in robotic machining. The present paper is focusing on finding experimental support for chatter-free prediction in robot high-speed milling by the regenerative chatter theory. Modal tests are first conducted on a milling robot and used to predict stability lobes by zeroth order approximation. A number of high-speed slotting tests are then carried out to verify the prediction results. Thus, the regenerative chatter theory is proved to be also applicable to robotic high-speed milling. Furthermore, low-frequency modes of the robot structure are investigated by more modal experiments involving a laser tracker and a displacement sensor. The low-frequency modes are identified as the main part of the prediction error of the zeroth order approximation method, which could also be dominant in low-speed robotic milling processes. In addition, robots are different from computer numerical control machines in terms of stiffness, trajectory following error, forced vibration, and motion coupling. These long-period trend terms have to be carefully taken into account in the regenerative chatter theory for robotic high-speed milling.

Funder

National R&D Program China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-frequency chatter suppression for robotic milling using a novel MRF absorber;Mechanical Systems and Signal Processing;2025-01

2. Output-only complete mode shape identification of milling robot body structures using a limited number of current sensors;CIRP Journal of Manufacturing Science and Technology;2024-10

3. Robotical Automation in CNC Machine Tools: A Review;Acta Mechanica et Automatica;2024-07-25

4. Influence of machining parameters on dynamic errors in a hexapod machining cell;The International Journal of Advanced Manufacturing Technology;2024-02-07

5. Hybrid Energies-Assisted Cutting Technology;Hybrid-Energy Cutting of Aerospace Alloys;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3