Affiliation:
1. Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
Abstract
This article proposes a novel hybrid piezoelectric–electromagnetic vortex-induced vibration energy harvester from flow of water inside of a pipe. The piezoelectric energy harvester was modeled with a macro-fiber composite P2-type while the electromechanical transduction was modeled by an elastic magnet coupled to the bluff body movement. A dual-mass configuration was proposed to increase the energy harvesting efficiency. Theoretical models and the submerged natural frequencies of the hybrid energy harvesters were outlined. Computational fluid dynamics and finite element analysis with ANSYS were used to visualize the response in synchronization and output the voltage extracted from the harvesting mechanisms. The addition of a secondary system improves the amount of harvestable energy and outputs more energy than just a single system. This demonstrates the superiority of a dual-mass hybrid system. A tuned secondary beam was used for L-body configurations to make use of inline oscillations, and the secondary piezoelectric output improved for all configurations. Secondary beam tuning also improved the performance of the harvester by any amount between 21% and 52% when compared against a single-mass hybrid energy harvester. A comparative study showed that the L-vertical and vertical bluff-body-tuned was the best performing hybrid-PE energy harvester based on total voltage output.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献