Affiliation:
1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, China
2. Faculty of Printing, Packaging and Digital Media Technology, Xi’an University of Technology, China
Abstract
Rotating machinery contains numerous rolling bearings, which are critical for ensuring the normal working position and accurate operation of individual shaft systems. However, damage to rolling bearings can change their damping, stiffness, and elastic force. As a result, fault signals appear nonlinear and nonstationary. Vibration signals thus become difficult to diagnose clearly, especially in the incipient fault stage. To solve this problem, this article proposes an intelligent approach based on variational mode decomposition and the self-organizing feature map for rolling bearing fault diagnosis. First, the intrinsic mode function components of rolling bearing vibration signals are effectively separated by variational mode decomposition. Then, permutation entropy is used to extract feature vectors, which are used as training and testing data for the self-organizing feature map network. Finally, the various fault types of states are clustered on an intuitive visualization map. Clustering results of the experimental signal and the measured signal prove that the proposed method can successfully extract and cluster the rolling bearing faults in engineering applications. The proposed method improves the fault recognition rate to some extent over traditional methods.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献