Research on Improved Fault Detection Method of Rolling Bearing Based on Signal Feature Fusion Technology

Author:

Fang Zhenggaoyuan1,Wu Qing-E1ORCID,Wang Wenjing1,Wu Shuyan2

Affiliation:

1. School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

2. College of Information Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China

Abstract

Rolling bearings are the core transmission components of large-scale equipment. Once a fault occurs, the consequences may be catastrophic, posing a serious threat to life and the safety of the property. Aimed at the problem of rolling bearing faults, this paper analyzes the characteristics of different fault signals and proposes a fault diagnosis method based on fuzzy signals. Based on the definition of an incomplete mapping of a new connotation, this paper proposes a fuzzy fault diagnosis method by fuzzy mapping, gives a fuzzy signal processing algorithm, and discusses two judgment principles. Further, it carries out a vibration signal analysis of the rolling bearing. According to the fault diagnosis method in this paper, the fault rolling bearing is diagnosed. The experimental results show that the proposed method can effectively diagnose rolling bearing faults closer to their natural attributes and solves the problem of traditional generator bearing fault diagnosis that requires complex models and poor diagnosis speed. Further, it can be seen that the average time consumption of this method is reduced and the fault recognition accuracy rate is increased. Compared with the existing related methods, this proposed diagnosis method is superior to that of several existing methods. It not only has higher precision, stronger anti-noise capacity, and faster diagnosis speed, but also has lower effective information loss.

Funder

Key Science and Technology Program of Henan Province

Key Science and Technology Project of Henan Province University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3