Affiliation:
1. Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, Hunan University of Arts and Science, China
Abstract
Gears are the most important transmission modes used in mining machinery, and gear faults can cause serious damage and even accidents. In the work process, vibration signals are influenced not only by friction, nonlinear stiffness, and nonstationary loads, but also by strong noise. It is difficult to separate the useful information from the noise, which brings some trouble to the fault diagnosis of mining machinery gears. The generalized S transform has the advantages of the short time Fourier transform and wavelet transform and is reversible. The time–frequency energy distribution of the gear vibration signal can be accurately presented by the generalized S transform, and a time–frequency filter factor can be constructed to filter the vibration signal in the time–frequency domain. These characteristics play an important role when the generalized S transform is used to remove the noise in the time–frequency domain. In this paper, a new gear fault diagnosis based on the time–frequency domain de-noising is proposed that uses the generalized S transform. The application principle, method steps, and evaluation index of the method are presented, and a wavelet soft-threshold filtering method is implemented for comparison with the proposed approach. The effectiveness of the proposed method is demonstrated by numerical simulation and experimental investigation of a gear with a tooth crack. Our analyses also indicate that the proposed method can be used for fault diagnosis of mining machinery gears.
Funder
the National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献