Fault diagnosis of rolling bearing based on empirical mode decomposition and higher order statistics

Author:

Cai Jian-hua1

Affiliation:

1. Department of Physics and Electronics, Hunan University of Arts and Science, Changde, China

Abstract

In order to solve the problem of the faulted rolling bearing signal getting easily affected by Gaussian noise, a new fault diagnosis method was proposed based on empirical mode decomposition and high-order statistics. Firstly, the vibration signal was decomposed by empirical mode decomposition and the correlation coefficient of each intrinsic mode function was calculated. These intrinsic mode function components, which have a big correlation coefficient, were selected to estimate its higher order spectrum. Then based on the higher order statistics theory, this method uses higher order spectrum of each intrinsic mode function to reconstruct its power spectrum. And these power spectrums were summed to obtain the primary power spectrum of bearing signal. Finally, fault feature information was extracted from the reconstructed power spectrum. A model, using higher order spectrum to reconstruct power spectrum, was established. Meanwhile, analysis was conducted by using the simulated data and the recorded vibration signals which include inner race, out race, and bearing ball fault signal. Results show that the presented method is superior to traditional power spectrum method in suppressing Gaussian noise and its resolution is higher. New method can extract more useful information compared to the traditional method.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3