Nonlinear control of stick-slip oscillations by normal force modulation

Author:

Nath Jyayasi1,Chatterjee S1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India

Abstract

The present paper investigates the efficacy of controlling friction induced vibration by normal load modulation. Friction-induced self-excited vibration, attributed to the low-velocity drooping characteristics of friction (Stribeck effect), is modelled by a mass-on-belt model where the normal force of the mass is being modulated based on the acceleration feedback followed by a second order filtering. Polynomial model is employed to study the friction phenomenon between the mass and the belt. The pole crossover design (to ensure faster transient and greater relative stability) is implemented to optimize the filter parameters with an independent choice of the belt velocity and control gain. These sets of optimized parameter values are then used to construct local stability boundaries in the plane of control parameters. Numerical simulations in a MATLAB SIMULINK model and bifurcation diagrams obtained in AUTO (while using belt velocity as the bifurcation parameter) indicate that a significantly small-amplitude limit cycle resulting from a supercritical Hopf bifurcation stabilizes the extreme low velocity region at higher values of the control gain. With the increase of the control gain the subcritical nature of Hopf bifurcation changes to a supercritical one. The efficacy of this optimization (based on numerical results) in the delicate low velocity region is also enclosed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3