Fuzzy-tuned PID Anti-swing Control of Automatic Gantry Crane

Author:

Solihin Mahmud Iwan1,Wahyudi 2,Legowo Ari1

Affiliation:

1. Intelligent Mechatronics System Research Unit, Department of Mechatronics Engineering, International Islamic University Malaysia (IIUM), P.O. Box 10, 50728, Kuala Lumpur, Malaysia

2. Intelligent Mechatronics System Research Unit, Department of Mechatronics Engineering, International Islamic University Malaysia (IIUM), P.O. Box 10, 50728, Kuala Lumpur, Malaysia,

Abstract

Anti-swing control is a well-known term in gantry crane control. It is designed to move the payload of gantry crane as fast as possible while the payload swing angle should be kept as small as possible at the final position. A number of studies have proposed anti-swing control using the well-known proportional, integral, derivative (PID) control method. However, PID controllers cannot always effectively control systems with changing parameters. Some studies have also proposed intelligent-based control including fuzzy control. However, the designers often have to face the problem of tuning many parameters during the design to obtain optimum performance. Thus, a lot of effort has to be taken in the design stage. In this paper Fuzzy-tuned PID controller design for anti-swing gantry crane control is presented. The objective is to design a practical anti-swing control which is simple in the design and also robust. The proposed Fuzzy-tuned PID utilizes fuzzy system as PID gain tuners to achieve robust performance to parameters’ variations in the gantry crane. A complex dynamic analysis of the system is not needed. PID controller is firstly optimized in MATLAB using a rough model dynamic of the system which is identified by conducting a simple open-loop experiment. Then, the PID gains are used to guide the range of the fuzzy outputs of the Fuzzy-tuned PID controllers. The experimental results show that the proposed anti-swing controller has satisfactory performance. In addition, the proposed method is straightforward in the design.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3