Fuzzy Logic Control of the End-Point Vibration in an Experimental Flexible Beam

Author:

Jnifene A.1,Andrews W2

Affiliation:

1. Department of Mechanical Engineering, University of Ottawa, 770 King Edward Ave., Ottawa, ON, Canada KIN 6NS

2. Department ofMechanical Engineering, Royal Military College of Canada, Kingston, ON, Canada

Abstract

This paper is concerned with the design and implementation of a fuzzy logic controller (FLC) to control the end-point vibration in a single flexible beam mounted on a two-degrees-of-freedom platform. The angular position of the hub and the signal from a strain gage mounted on the beam are used as the two inputs to the FLC. In order to add more damping, the strain gage signal is combined with the hub angular velocity represented by the output of a tachometer attached to the motor shaft. We discuss how to build the rule base for the flexible beam based on the relation between the angular displacement of the hub and the end-point deflection, as well as the effect of different scaling gains on the performance of the FLC. We present several experimental results showing the effectiveness of the FLC in reducing the end-point vibration of the flexible beam.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3