Trajectory Optimization Strategies for Supercavitating Underwater Vehicles

Author:

Ruzzene M.1,Kamada R.2,Bottasso C.L.3,Scorcelletti F.3

Affiliation:

1. School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Drive, Atlanta, GA 30332-0150, USA,

2. School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Drive, Atlanta, GA 30332-0150, USA

3. Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy

Abstract

Supercavitating vehicles are characterized by substantially reduced hydrodynamic drag, in comparison with fully wetted underwater vehicles. Drag is localized at the nose of the vehicle, where a cavitator generates a cavity that completely envelopes the body, at the fins, and on the vehicle after-body. This unique loading configuration, the complex and non-linear nature of the interaction forces between vehicle and cavity, the unsteady behavior of the cavity itself and memory effects associated with its formation process make the control and maneuvering of supercavitating vehicles particularly challenging. This study presents an initial effort towards the evaluation of optimal trajectories for this class of underwater vehicles. Flight trajectories and maneuvering strategies for supercavitating vehicles are obtained through the solution of an optimal control problem. Given a cost function, and general constraints and bounds on states and controls, the solution of the optimal control problem yields control time histories that maneuver the vehicle according to the desired strategy, together with the associated flight path. The optimal control problem is solved using the direct transcription method, which does not require the derivation of the equations of optimal control and leads to the solution of a discrete parameter optimization problem. Examples of maneuvers and resulting trajectories are given to demonstrate the effectiveness of the proposed methodology and the generality of the formulation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3