Research on Lateral Maneuverability of a Supercavitating Vehicle Based on RBFNN Adaptive Sliding Mode Control with Rolling Restriction and Planing Force Avoidance

Author:

Yang Guang1ORCID,Lu Faxing1,Xu Junfei1

Affiliation:

1. College of Weapon Engineering, Naval University of Engineering, Wuhan 430033, China

Abstract

This paper addresses the lateral motion control of a supercavitating vehicle and studies its ability to maneuver. According to the unique hydrodynamic characteristics of the supercavitating vehicle, highly coupled nonlinear 6-degree-of-freedom (DOF) dynamic and kinematic models are constructed considering time-delay effects. A control scheme utilizing radial basis function (RBF) neural-network-(NN)-based adaptive sliding with planing force avoidance is proposed to simultaneously control the longitudinal stability and lateral motion of the supercavitating vehicle in the presence of external ocean-induced disturbances. The online estimation of nonlinear disturbances is conducted in real time by the designed NN and compensated for the dynamic control laws. The adaptive laws of the NN weights and control parameters are introduced to improve the performance of the NN. The least squares method is utilized to solve the actuator control efforts with rolling restriction in real-time online. Rigorous theoretical proofs based on the Lyapunov theory prove the globally asymptotic stability of the proposed controller. Finally, numerical simulations were performed to obtain maximum maneuverability and verify the effectiveness and robustness of the proposed control scheme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference49 articles.

1. Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties;Xiang;Comput. Oper. Res.,2017

2. Trajectory Optimization Strategies for Supercavitating Underwater Vehicles;Ruzzene;J. Vib. Control.,2008

3. Fan, H., Zhang, Y., and Wang, X. (2011, January 15–17). Longitudinal dynamics modeling and MPC strategy for high-speed supercavitating vehicles. Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China.

4. A benchmark control problem for supercavitating vehicles and an initial investigation of solutions;Dzielski;J. Vib. Control.,2003

5. Dynamics and Control of Supercavitating Vehicles;Lin;J. Dyn. Syst. Meas. Control.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3