Feature extraction and fault severity classification in ball bearings

Author:

Sharma Aditya1,Amarnath M1,Kankar PK1

Affiliation:

1. Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India

Abstract

The present study attempts to diagnose severity of faults in ball bearings using various machine learning techniques, like support vector machine (SVM) and artificial neural network (ANN). Various features are extracted from raw vibration signals which include statistical features such as skewness, kurtosis, standard deviation and measures of uncertainty such as Shannon entropy, log energy entropy, sure entropy, etc. The calculated features are examined for their sensitivity towards fault of different severity in bearings. The proposed methodology incorporates extraction of most appropriate features from raw vibration signals. Results revealed that apart from statistical features uncertainty measures like log energy entropy and sure entropy are also good indicators of variation in fault severity. This work attempts to classify faults of different severity level in each bearing component which is not considered in most of the previous studies. Classification efficiency achieved by proposed methodology is compared to the other methodologies available in the literature. Comparative study shows the potential application of proposed methodology with machine learning techniques for the development of real time system to diagnose fault and it’s severity in ball bearings.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3