Optimizing sample length for fault diagnosis of clutch systems using deep learning and vibration analysis

Author:

Chakrapani Ganjikunta1,Venkatesh Sridharan Naveen2,Mahanta Tapan Kumar1,Lakshmaiya Natrayan3ORCID,Sugumaran Vaithiyanathan1ORCID

Affiliation:

1. School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Chennai, Tamil Nadu, India

2. Division of Operation and Maintenance Engineering, Luleå University of Technology, Luleå, Sweden

3. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India

Abstract

Clutches are prone to failure owing to extended heat exposure and high levels of abrasion during power transfer. Internal damage, downtime, and permanent transmission system lock-up all can result from these faults. To detect and diagnose these faults, this study employs the deep learning approach. Vibration signals were obtained from a test rig that was exposed to various clutch conditions at various loads. The amount of data points (signal length) when collecting vibration signals from a test rig can have a significant effect on the accuracy of results. A shorter sample length can lead to an increased uncertainty in the results, while a longer sample length can lead to more accurate results. A longer sample length also increases the computational complexity of the diagnosis process, which can lead to longer execution times. In this study vibration signals were collected for various sample lengths to find the optimal sample length for systemic clutch fault diagnostics. The collected vibration signals are analyzed and transformed into vibration plots that serve as input to the deep learning pretrained network. VGG-16 model was considered for this study to diagnose the clutch system faults. Based on the outcomes, the optimal sample length for the no load condition was identified as 4000, while for the 5-kg load and 10-kg load conditions 3000 sample length was suggested for fault diagnosis of the clutch system.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3