Affiliation:
1. School of Mechanical Engineering, Hefei University of Technology, PR China
2. National and Local Joint Engineering Research Center for Automotive Technology and Equipment, PR China
Abstract
Aimed at the safety and stability problems of intelligent vehicles under extreme conditions such as low adhesion road surface and emergency lane change and obstacle avoidance, this article designs a lane change and obstacle avoidance controller based on road adhesion coefficient. Using the nonlinear vehicle dynamics model as the prediction model, using the recursive least squares method to identify the road adhesion coefficient, considering the road adhesion coefficient to plan and adjust in the obstacle avoidance path as well as limit constraint conditions of the model predictive control controller, using model predictive control method for the expectation of intelligent vehicle trajectory tracking, travels tremendously guarantee the security and stability of driving. The joint CarSim–Simulink simulations results show that under poor road conditions, the trajectory tracking accuracy after optimization is higher and the vehicle is less prone to sideslip and instability. The lane change controller designed in this article has strong adaptability to different road surface adhesion coefficient, and all parameters can be controlled within a reasonable safety range at different speeds, with good robustness.
Funder
The Fundamental Research Funds for the Central Universities of China
National Key R&D Program of China
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献