An improved fuzzy controller on electromechanical nano-tweezers

Author:

Koochi Ali1ORCID,Goharimanesh Masoud1,Gharib Mohammad Reza1ORCID

Affiliation:

1. Mechanical Engineering Department, University of Torbat Heydarieh, Torbat Heydarieh, Iran

Abstract

This paper aims to develop an improved fuzzy controller for position controlling of nano-wire-based electromechanical nano-tweezers. The nonlinear governing equation is developed by incorporating the Euler–Bernoulli beam model and Hamilton’s principle. Also, the quantum vacuum fluctuations are assimilated in the developed model in terms of Casimir attraction. The nonlinear constitutive equation is transformed into a nonlinear state-space form by employing the Galerkin method. Based on the linguistic explanation of the system, an improved fuzzy controller is designed to control the nano-tweezers for manipulating desired objects. The Taguchi technique has been used to decrease the number of independent experiments and improve the structure of membership functions, consequently. The designed controller is employed for both controlling and path tracking of nano-tweezers. The outcomes indicate that the proposed improved fuzzy controller has excellent performance for stabilizing the nano-tweezers at any desired gap.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3