Direct solutions for robust vibration suppression through motion design

Author:

Boscariol Paolo1ORCID,Richiedei Dario1ORCID,Trevisani Alberto1

Affiliation:

1. Dipartimento di Tecnica e Gestione Dei Sistemi Industriali, Università di Padova, Vicenza, Italy

Abstract

Motion planning is an effective tool for the suppression of residual oscillation in underactuated mechanical systems, and in particular, model-based method can be used to virtually eliminate any unwanted oscillation after the completion of a motion task. Here, a novel motion planning method, aimed at maximizing robustness to model uncertainties and based on a direct formulation, is proposed and tested. The choice of a direct formulation is aimed at overcoming the numerical problems often encountered when dealing with indirect trajectory planning methods, including the limited robustness to any model-plant mismatch. The proposed direct method is based on three different motion profiles, and is tested for the rest-to-rest motion of a slender beam, with and without parametric robustness constraints, but the same framework can be adapted to countless other situations and formulations. The experimental results showcase good accuracy and a sensible improvement in mitigating the effects of unmodeled perturbations on the system sported by the proposed robustified method over its non-robust counterpart. Experimental results show also the outcome is very similar to the one resulting from a more numerically challenging solution formulated as an indirect problem by means of a two-point boundary value problem.

Funder

European Union Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza (PNRR) – Missione 4 Componente 2, Investimento 1.5 – D.D

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3