Active multimodal vibration suppression of a flexible structure with piezoceramic sensor and actuator by using loop shaping

Author:

Sethi V1,Franchek MA1,Song G1

Affiliation:

1. Department of Mechanical Engineering, University of Houston, Houston, TX, USA

Abstract

This paper represents active multimodal vibration control of a flexible beam structure with piezoceramic (PZT) actuators and sensors using the loop shaping method. With surface-bonded PZT patch actuators and sensors, the flexible beam has both sensing and actuating capacities. Due to its flat auto spectrum in the specified frequency range, the Schroeder wave is used as an excitation signal for the non-parametric identification of the flexible beam structure. The identified open loop model is then used for the closed loop design by using the loop shaping method based on the extended sensitivity charts. A loop shaping compensator is designed to achieve multimodal vibration suppression. Numerical results showed a reduction of 8 decibels for the first mode and 12–14 decibels for the second and third modes. Experimental results closely match the simulation results. Furthermore, the results of loop shaping method are compared with those of the methods of linear quadratic regulator and pole-placement control, which are designed based on state space models via the parametric identification of the flexible beam. Comparisons show that the loop shaping method is easier to design since a parametric identification is not required and requires less control effort while maintaining the effectiveness in vibration suppression.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3