Affiliation:
1. Department of Mechanical Engineering, University of Houston, Houston, TX, USA
Abstract
This paper represents active multimodal vibration control of a flexible beam structure with piezoceramic (PZT) actuators and sensors using the loop shaping method. With surface-bonded PZT patch actuators and sensors, the flexible beam has both sensing and actuating capacities. Due to its flat auto spectrum in the specified frequency range, the Schroeder wave is used as an excitation signal for the non-parametric identification of the flexible beam structure. The identified open loop model is then used for the closed loop design by using the loop shaping method based on the extended sensitivity charts. A loop shaping compensator is designed to achieve multimodal vibration suppression. Numerical results showed a reduction of 8 decibels for the first mode and 12–14 decibels for the second and third modes. Experimental results closely match the simulation results. Furthermore, the results of loop shaping method are compared with those of the methods of linear quadratic regulator and pole-placement control, which are designed based on state space models via the parametric identification of the flexible beam. Comparisons show that the loop shaping method is easier to design since a parametric identification is not required and requires less control effort while maintaining the effectiveness in vibration suppression.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献