The response of structures equipped with tuned liquid dampers of complex geometry

Author:

Love JS1,Tait MJ2

Affiliation:

1. RWDI Inc., Canada

2. Department of Civil Engineering, McMaster University, Canada

Abstract

Tuned liquid dampers (TLDs) employ sloshing fluid to reduce the resonant response of structures. Existing structure-TLD models are limited to rectangular or circular tanks, shapes that may not always be feasible in practice due to geometric restrictions of the building floor plan. This paper utilizes an equivalent linearized mechanical model and a nonlinear multimodal model to predict the response of the structure-TLD systems where the TLD tank geometry is irregular. Experimental structure-TLD system tests are conducted that consider two irregular tank shapes. Response history plots and frequency response plots of the structural displacement and TLD wave heights are created to evaluate the models using the experimental results. The parent distributions and 10-minute peak distributions of the structural displacements and TLD wave heights are created for the simulated and experimental results. These distributions indicate that both the linearized and nonlinear models can accurately predict the structural response; however, the linearized model substantially underestimates the peak wave heights. Since wave heights are required to establish the required tank free board, or roof impact pressures, it is concluded that nonlinear analysis of the structure-TLD system model is required before a TLD design is finalized.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3