An adaptive multimodal approach to nonlinear sloshing in a rectangular tank

Author:

FALTINSEN ODD M.,TIMOKHA ALEXANDER N.

Abstract

Two-dimensional nonlinear sloshing of an incompressible fluid with irrotational flow in a rectangular tank is analysed by a modal theory. Infinite tank roof height and no overturning waves are assumed. The modal theory is based on an infinite-dimensional system of nonlinear ordinary differential equations coupling generalized coordinates of the free surface and fluid motion associated with the amplitude response of natural modes. This modal system is asymptotically reduced to an infinite-dimensional system of ordinary differential equations with fifth-order polynomial nonlinearity by assuming sufficiently small fluid motion relative to fluid depth and tank breadth. When introducing inter-modal ordering, the system can be detuned and truncated to describe resonant sloshing in different domains of the excitation period. Resonant sloshing due to surge and pitch sinusoidal excitation of the primary mode is considered. By assuming that each mode has only one main harmonic an adaptive procedure is proposed to describe direct and secondary resonant responses when Moiseyev-like relations do not agree with experiments, i.e. when the excitation amplitude is not very small, and the fluid depth is close to the critical depth or small. Adaptive procedures have been established for a wide range of excitation periods as long as the mean fluid depth h is larger than 0.24 times the tank breadth l. Steady-state results for wave elevation, horizontal force and pitch moment are experimentally validated except when heavy roof impact occurs. The analysis of small depth requires that many modes have primary order and that each mode may have more than one main harmonic. This is illustrated by an example for h/l = 0.173, where the previous model by Faltinsen et al. (2000) failed. The new model agrees well with experiments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 195 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3