Affiliation:
1. Department of Mechanical Engineering, Kuwait University, Kuwait
Abstract
Classical input shaping is based on convolving a general input signal with a sequence of timed impulses. These impulses are chosen to match certain modal parameters of the system under control to eliminate residual vibrations in rest-to-rest maneuvers. This type of input shaping is strongly dependent on the system period. In this work, an adjustable maneuvering time wave form command shaper is presented. The equation of motion of a simple pendulum model of a crane is derived and solved in order to eliminate residual vibrations at the end of motion. Several cases are simulated numerically and validated experimentally on an experimental model of an overhead crane. Results show that the proposed command shaper is capable of eliminating residual vibrations effectively with a single continuous wave form command. The work is extended to include the effect of hoisting on the shaper performance. Several functions are used to simulate hoisting. To overcome the added complexity of hoisting on the system, an approximation technique is used to determine initial shaped command parameters, which are later used in a genetic algorithm optimization scheme. Numerical and experimental results prove that the proposed command shaper can effectively eliminate residual vibrations in rest-to-rest maneuvers.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献