Dynamic modeling of magnetic suspension isolator using artificial neural network: a modified genetic approach

Author:

Song Chun-sheng12,Hu Yefa1,Xie Shengquan2,Zhou Zude1

Affiliation:

1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, People's Republic of China

2. Department of Mechanical Engineering, The University of Auckland, New Zealand

Abstract

Active vibration isolation technology has been widely used to reduce vibration transmission in many different engineering systems. Magnetic suspension isolator (MSI), as an active isolation actuator, has shown advantages including non‐contact, high response frequency, high reliability and long life‐span. However, its potential has not been fully explored due to the nonlinear and hysteretic behavior in a dynamic environment, and there is limited research work in the area. This paper proposes a new artificial neural network (ANN)‐based approach to model the dynamics of MSI. A modified genetic algorithm (MGA) is developed to train the ANN to improve the model accuracy. Results clearly show that the ANN model with the MGA approach outperforms the back propagation (BP) approach and the analytic method based on the least squares fitting method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3