Synchronization and anti-synchronization of fractional dynamical networks

Author:

Zhang Runfan1,Chen Diyi12,Do Younghae3,Ma Xiaoyi1

Affiliation:

1. Department of Electrical Engineering, Northwest A&F University, Shaanxi Yangling China

2. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, USA

3. Department of Mathematics, Kyungpook National University, Daegu, Korea

Abstract

The issue of synchronization between dynamical systems has attracted much attention, and the systems with integer-order dynamical networks have been well studied. The synchronous behavior of fractional-order dynamical systems is very interesting and importance, but has rarely been studied. In this paper, we studied the synchronization and anti-synchronization behavior between integer-order dynamical networks and fractional-order dynamical systems via a Takagi-Sugeno fuzzy model. Remarkably, there is synchronous behavior in such a system, and this is dramatically different from the behavior of integer-order dynamical networks. Moreover, we studied the impact of different coupling strengths on the dynamical process of synchronization and robustness of the designed controller to different coupling functions, different dimensions of dynamical equations and different fractional orders. Finally, we propose the theoretical analysis, which coincides well with the numerical simulations of five typical examples.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3