Cross domain fault diagnosis based on generative adversarial networks

Author:

Alabsi Mohammed1ORCID,Pearlstein Larry1,Franco-Garcia Michael1

Affiliation:

1. The College of New Jersey, Ewing, NJ, USA

Abstract

Data-driven fault diagnosis utilizing deep learning algorithms is currently a topic of great interest. Without proper training, data-driven models usually fail to generalize on operating conditions different from the ones used in the training set. The majority of domain adaptation research for machinery fault diagnosis focuses on the transfer between limited working conditions for the same machine. In real-life applications, machines operate under a wide range of operating conditions and the data are mostly available for healthy conditions with seldom failures. Hence, models generated from controlled experiments do not usually generalize well under substantial domain shifts. To address this issue, this paper proposes a semi-unsupervised domain adaptation approach for cross-machine fault diagnosis which integrates model optimization and Generative Adversarial Networks (GANs) to bridge the gap between source and target domains. Experiments of transferring between two bearing data sets show that the proposed method is able to effectively train an optimized model that generalizes on both the source and target domains, and train a generator that learns the source domain probability distribution to substitute for larger domain shifts.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3