A Study of Deep Neural Networks Transfer Learning For Fault Diagnosis Applications

Author:

Franco-Garcia Michael,Benasutti Alex,Pearlstein Larry,Alabsi Mohammed

Abstract

Intelligent fault diagnosis utilizing deep learning algorithms has been widely investigated recently. Although previous results demonstrated excellent performance, features learned by Deep Neural Networks (DNN) are part of a large black box. Consequently, lack of understanding of underlying physical meanings embedded within the features can lead to poor performance when applied to different but related datasets i.e. transfer learning applications. This study will investigate the transfer learning performance of a Convolution Neural Network (CNN) considering 4 different operating conditions. Utilizing the Case Western Reserve University (CWRU) bearing dataset, the CNN will be trained to classify 12 classes. Each class represents a unique differentfault scenario with varying severity i.e. inner race fault of 0.007”, 0.014” diameter. Initially, zero load data will be utilized for model training and the model will be tuned until testing accuracy above 99% is obtained. The model performance will be evaluated by feeding vibration data collected when the load is varied to 1, 2 and 3 HP. Initial results indicated that the classification accuracy will degrade substantially. Hence, this paper will visualize convolution kernels in time and frequency domains and will investigate the influence of changing loads on fault characteristics, network classification mechanism and activation strength.

Publisher

PHM Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3