Virtual semi-active damping learning control for robot manipulators interacting with unknown environment

Author:

Wang Wenrui12ORCID,Li Ang12ORCID,Li Qinwen12,Gu Jinlin12ORCID,Huo Qi1,Zhu Mingchao1,Li Yanhui1,Chu Hairong1ORCID

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

2. University of Chinese Academy of Sciences, China

Abstract

Position controllers are used for free motion, whereas force controllers are used for constrained motion of robotic manipulators. The hybrid controller switches between position and force control modes depending on whether the manipulator is in contact with the environment. To improve production efficiency, the velocity of contact between the manipulator and environment is not set to zero. However, the high impact force due to the nonzero contact velocity might damage the environment surface or manipulators. In this article, we propose a virtual semi-active damping learning method to suppress force overshoot without decreasing the contact velocity. Virtual semi-active damping is adjusted according to the manipulator position in force control. The limited-memory BFGS method is used to obtain the ideal impedance model for the unknown environment. By minimizing the defined cost function, we get the desired interaction performance. The correctness and effectiveness of the proposed method are verified by conducting simulations and experiments.

Funder

Science and Technology Development Plan of Jilin province

Jilin Province and the Chinese Academy of Sciences Cooperation in Science and Technology High-Tech Industrialization Special Funds Project

National Key Research and Development Program of China;

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3