Synergistic effect of cinnamaldehyde on the thermal inactivation of Listeria monocytogenes in ground pork

Author:

Wang Yuexia1,Li Xiaoyan1,Lu Yangliu2,Wang Jianan1,Suo Biao2ORCID

Affiliation:

1. College of Life Sciences, Henan Agricultural University, Zhengzhou, China

2. College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China

Abstract

The aim of this study was to statistically evaluate the effect of a naturally food-derived cinnamaldehyde on the thermal inactivation of Listeria monocytogenes in ground pork. This study combined four concentrations of cinnamaldehyde (0, 0.1, 0.5, and 1.0% vol/wt) and four temperatures (55, 60, 65, and 70 ℃) to predict the thermal inactivation curves of L. monocytogenes. The Weibull model successfully described the primary thermal inactivation using the Integrated Pathogen Modeling Program. These results statistically proposed that the cinnamaldehyde supplementation in ground pork attenuates the thermo-tolerance of L. monocytogenes. The time for achieving a 5-log10 reduction of L. monocytogenes declined from 28.14 to 17.35 min at 55 ℃ when the ground pork sample was supplemented by 1% cinnamaldehyde, while the time declined from 1.95 to 0.34 min at 70 ℃. Thereafter, based on the 5.0-log10 lethality, secondary models were fitted by a selected polynomial model. The transmission electron microscopy revealed that cinnamaldehyde causes serious damage to membrane integrity and increases the occurrence of cell membrane rupture and leakage of cytoplasmic content under thermal treatment. Our model represents a mathematical tool that will help meat-product manufacturers to improve the efficacy of thermal processing ground pork supplemented with cinnamaldehyde.

Funder

China Scholarship Council

National Natural Science Foundation of China

Education Department of Henan Province

Science and Technology Department of Henan Province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3