Affiliation:
1. Chemical and Food Engineering Department, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
Abstract
Coffee is one of the main sources of antioxidants in the diet of many countries. The purpose of this research was to assess the effect of different brewing methods, particle size, and coffee quality on the total phenolic content, antioxidant capacity (AC), and sensory profile of the beverage. The brewing methods yielded differences in taste with higher bitterness in immersion methods. However, the main factors that influenced coffee extraction and taste were particle size and coffee type. A finer particle size allowed for greater phenolic and caffeine (CA) extraction (2.82 mg GA/mL; 1.01 mg CA/mL), resulting in higher bitterness and astringency. Additionally, the type of coffee resulted in a higher CA content in commercial coffee (Specialty: 0.72 ± 0.10 mg CA/mL; Commercial: 1.13 ± 0.14 mg CA/mL). The results showed that using a ratio of 1:20 and 1:15 for commercial and specialty coffee, respectively, yielded differences in AC using the DPPH method (Specialty: 11.54 ± 1.12 µmol/mL; Commercial: 10.20 ± 1.88 µmol/mL) but not with the ABTS method (Specialty: 10.38 ± 1.23 µmol/mL; Commercial: 10.37 ± 1.13 µmol/mL). Similarly to the ABTS method, no differences in the total phenol content of the coffee cup were observed (Specialty: 2.52 ± 0.40 mg/mL; Commercial: 2.43 ± 0.28 mg/mL). Thus, the findings suggest that specialty coffee offers consumers a more balanced cup with less CA content. This allows for more coffee consumption without an excessive intake of CA. However, consumers can adjust the functionality, sensory profile, and CA content of a coffee cup by modifying the particle size and the brewing method used.
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science