Affiliation:
1. Bahri Dağdaş International Agricultural Research Institute, Konya, Turkey
2. Department of Food Engineering, Engineering and Architecture Faculty, Necmettin Erbakan University, Konya, Turkey
Abstract
In this study, raw and germinated quinoa seed flour was utilized in gluten-free pasta formulation. Rice:corn semolina (50:50) blend was used in gluten-free pasta as a control group. Quinoa flours were replaced with rice:corn semolina blend at different (0–30%) ratios in gluten-free pasta formulation. Guar gum (3%) was also used to tolerate structural defects caused by gluten deficiency. Trials were conducted according to (2 × 4) × 2 factorial design. Color values, cooking properties, and chemical and sensory attributes of gluten-free pasta samples were determined. Quinoa flour type and quinoa flour addition ratio factors significantly (p < 0.05) affected the L*, a* color values and all of the cooking properties of the gluten-free pasta samples. Utilization of germinated quinoa flour in gluten-free pasta revealed lower water uptake, volume increase, firmness, and higher cooking loss values than that of raw quinoa flour. Quinoa flour especially improved the mean values of protein, total phenolic content, antioxidant activity from 8.1%, 0.7 mg GAE/g, and 13.4%, up to 12.7%, 1.5 mg GAE/g, and 28.8%, respectively. A significant (p < 0.05) increment was observed in Ca, Fe, K, Mg, P, and Z content of the gluten-free pasta and all addition ratios of quinoa flour. As a result, increasing amount of quinoa flour enriched the nutritional composition of gluten-free pasta but high utilization ratio resulted in slight sensory losses.
Funder
Necmettin Erbakan University, Unit of Scientific Research Projects
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献