Preliminary design and multi-objective optimization of electro-hydrostatic actuator

Author:

Wu Shuai12,Yu Bo12,Jiao Zongxia12,Shang Yaoxing12,Luk PCK3

Affiliation:

1. School of Automation Science and Electric Engineering, Beihang University, Beijing, China

2. Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing, China

3. Electric Power and Drives Group, Power Engineering Centre, Cranfield University, Bedfordshire, UK

Abstract

Electro-hydrostatic actuator is generally regarded as the preferred solution for more electrical aircraft actuation systems. It is of importance to optimize the weight, efficiency and other key design parameters, during the preliminary design phase. This paper describes a multi-objective optimization preliminary design method of the electro-hydrostatic actuator with the objectives of optimizing the weight and efficiency. Models are developed to predict the weight and efficiency of the electro-hydrostatic actuator from the requirements of the control surface. The models of weight prediction are achieved by using scaling laws with collected data, and the efficiency is calculated by the static energy loss model. The multi-objective optimization approach is used to find the Pareto-front of objectives and relevant design parameters. The proposed approach is able to explore the influence of the level length of linkage, displacement of pump and torque constant of motor on the weight and efficiency of the electro-hydrostatic actuator, find the Pareto-front designs in the defined parameter space and satisfy all relevant constraints. Using an electro-hydrostatic actuator for control surface as a test case, the proposed methodology is demonstrated by comparing three different conditions. It is also envisaged that the proposed prediction models and multi-objective optimization preliminary design method can be applied to other components and systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3