Numerical Study on Improved Geometry of Outlet Pressure Ripple in Parallel 2D Piston Pumps

Author:

Huang Yu,Lu QianqianORCID,Shao Wei,Liu Li,Ding ChuanORCID,Ruan Jian

Abstract

Because the axial piston pump is often used in the aerospace and aviation fields, it is necessary to pay attention to its outlet pressure and flow characteristics. The parallel 2D piston pump proposed, based on the axial piston pump, has no structural flow ripple because it has a rail with a uniform acceleration and deceleration. Now, the pump is used in the special working conditions of the aerospace field, and it is required to meet the rated flow of 50 L/min, the rated load of 8 MPa, and an extremely low-pressure ripple. Based on CFD technology, this paper studies the pump’s outlet flow and pressure ripples through numerical simulation. According to the causes of the outlet pressure ripple, an improved geometry is determined to further reduce the outlet pressure ripple. Using a high-frequency pressure sensor to measure the outlet pressure ripple of the optimized pump prototype, it was found that the outlet pressure ripple rate of the prototype was only 6%. The parallel 2D piston pump has been proved by the simulation and test that its outlet pressure ripple is extremely low. However, it is not effective to reduce the outlet flow ripple by increasing the pre-pressure and reducing the backflow. In parallel 2D piston pumps, it is still necessary to find a new method to further reduce outlet pressure and flow ripples.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference31 articles.

1. A Review of High-Speed Electro-Hydrostatic Actuator Pumps in Aerospace Applications: Challenges and Solutions

2. F-35 subsystems design, development & verification;Robbins;Proceedings of the 2018 Aviation Technology Integration Operation Conference,2018

3. Engineering research in fluid power: a review

4. Investigation on Test Method and Noise Reduction Structure with Large Operating Conditions for Piston Pump Flow Rate;Song;Ph.D. Dissertation,2013

5. Preliminary design and multi-objective optimization of electro-hydrostatic actuator

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3