Detumbling motion planning for the space manipulator with grasped targets and flexible appendages in the post-capturing phase

Author:

Zhan Bowen1ORCID,Jin Minghe1,Ma Boyu1ORCID,Huang Bincheng2

Affiliation:

1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China

2. Key Laboratory of Cognition and Intelligence Technology, China Electronics Technology Group Corporation, Beijing, China

Abstract

This paper proposes a detumbling motion planning algorithm for free-flying space manipulator with a grasped tumbling target in the post-capturing phase. This algorithm can not only collision-freely guide the space manipulator and the target to terminal stationary states but also suppress the residual vibration of the flexible appendage on the space manipulator. First, considering the avoidances of self-collisions and motion singularities, a smooth detumbling path is planned for the space manipulator by a proposed smoothing rapid random tree star algorithm (SM-RRT*). Second, a quintic polynomial function is implemented to generate a continuous detumbling trajectory along the detumbling path. Then, with the object of minimizing the residual flexible vibrations and the constrains of joint acceleration limits, an optimization model is established to refine the detumbling trajectory. Finally, the optimization model is solved by an improved particle swarm optimization algorithm (PSO), where a potential field term is included in the generation of the particle velocity to enhance the computational efficiency. Simulation results validate the effectiveness of the proposed detumbling motion planning algorithm.

Funder

Major Research Plan of the National Natural Science Foundation of China

Innovative Research Group project of National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel fuel-saving detumbling strategy for post-capture combined spacecraft;Aircraft Engineering and Aerospace Technology;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3