Offense–defense confrontation decision making for dynamic UAV swarm versus UAV swarm

Author:

Xing Dongjing1ORCID,Zhen Ziyang1,Gong Huajun1

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

This paper studies a dynamic swarm versus swarm unmanned aerial vehicle (UAV) combat problem and proposes a self-organized offense–defense confrontation decision-making (ODCDM) algorithm. This ODCDM algorithm adopts the distributed architecture to account for real-time implementation, where each UAV is treated as an agent and able to solve its local decision problem through the information exchange with neighbors. At each decision making step, the swarm seeks an optimal target allocation scheme and each UAV further selects the corresponding behavioral rules, leading to emergent offensive and defensive behaviors. Therefore, the offense–defense confrontation decision-making process is divided into the target allocation decision based on distributed consensus-based auction algorithm (CBAA) and social-force-based swarm motion decision. An offense–defense preference is introduced to the target allocation optimization model, providing the tactics options for UAV to adopt more offensive or more defensive posture. On the basis of classic collective behaviors of cohesion, separation and alignment, a combat stimulus is considered to drive UAV towards the assigned target. Finally, simulation experiments are carried out to verify the effectiveness of the ODCDM algorithm, and analyze the influences of the external deployment and internal tactics on the combat results.

Funder

Aeronautical Science Foundation of China

the Fundamental Research Funds for the Central Universities

Jiangsu Six Peak of Talents Program

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3