Nonlinear aeroelastic stability analysis of a two-stage axially moving telescopic wing by using fully intrinsic equations

Author:

Moravej Barzani Sayed Hossein1,Shahverdi Hossein1ORCID,Amoozgar Mohammadreza2

Affiliation:

1. Department of Aerospace Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

2. Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK

Abstract

During the process of span extension for an aircraft wing equipped with a telescopic morphing mechanism, the wing aspect ratio increases, and hence, the geometrical nonlinearities might become more significant. In this regard, this paper aims to investigate the effect of structural nonlinearity on the aeroelasticity of span morphing wings using the exact fully intrinsic equations for the first time. Furthermore, the effects of various parameters such as thrust force, engine location, chord size, flight altitude, initial angle of attack, and overlapping mass on the aeroelasticity of the wing are studied. The applied aerodynamic loads in an incompressible flow regime are determined using Peters’ unsteady aerodynamic model. In order to check the stability of the system, first the resulting nonlinear partial differential equations are discretized by using the central finite difference method and then linearized about the static equilibrium. Finally, by obtaining the eigenvalues of the linearized system, the stability of the wing is evaluated. It is observed that by using the fully intrinsic equations, the instability of the axially moving telescopic wing can be determined more accurately. Moreover, the results show that the morphing length and overlapping mass have significant effects on the aeroelastic stability of the telescopic wing.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference42 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3