Computational analysis of the effects of a boundary layer ingesting propulsion system in transonic flow

Author:

Mantič-Lugo Vladislav12,Doulgeris Georgios1,Singh Riti1

Affiliation:

1. Department of Power and Propulsion, Cranfield University, UK

2. Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

Continuous requirements for more efficient aircrafts lead to the design and analysis of novel propulsion configurations, with an example being the boundary layer ingestion. The complexity and integration challenges in such aircraft synergistic propulsion system characterize the research in this field, driven by the potential benefits. The aim of this article is to investigate the effects of boundary layer ingestion on the aerodynamics of a transonic wing, together with the quality of the flow ingested by the propulsion system. A two-dimensional computational model of a transonic airfoil with boundary layer ingesting propulsion system is developed in order to assess boundary layer ingestion for a commercial air transport at cruise conditions and highlight the complex integration issues arising from such configuration. A parametric analysis of the effects of flight conditions, nacelle geometry and engine operating point, on lift, pressure recovery, distortion, total pressure and velocity distribution at the intake, comes to enhance understanding of the performance of this configuration. The pressure distribution around the airfoil and the boundary layer growth are both substantially affected by the engine operating condition, which is represented by the mass flow ratio, with a direct impact on pressure recovery and lift. Mach number and angle of attack influences on lift and drag ingested are also investigated. Intake size and position on the airfoil appear to have significant effects on lift and losses ingested. In general, the results of this study include several aspects related to wing aerodynamics and ingested flow quality, which may facilitate design and integration of the boundary layer ingestion propulsion system for future commercial aircraft.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference7 articles.

1. Kuchemann DThe aerodynamic design of aircraft1978New YorkPergamon Press229–229

2. The Jet Airplane Utilizing Boundary Layer Air for Propulsion

3. Boundary-Layer-Ingesting Inlet Flow Control

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3